
Kessler kOS Network Protocol Definition
(Third Party)

Last Updated: February 25, 2022

Introduction
This document describes the network communications between a Kessler network-enabled motor
control product (Device) and client control applications. Messages between the Device and clients
are categorized as Get/Set Messages, Action Messages, or Notification Messages. Each message
consists of a fixed header along with a payload containing 0 or more parameter values. Messages
have a message type in the header that indicates whether they are intended to ‘Set’ a value on the
Device or ‘Get’ a value from the Device. All messages from the Device to clients have a message type
of ‘Response’.

Terminology
• “Device” refers to any Kessler network-enabled motor control product, such as CineShooter

or Second Shooter.
• A “move” refers to a series of pre-programmed motor moves (and/or photo shoots) that are

executed by the Device.
• “Network” refers to any communication medium such as Ethernet or USB.
• The terms “client” and “software” are synonymous and refer to any control software

implementation.
• A “message” is a discrete block of data sent over the network between a software client and a

Device.
• The terms “motor” and “axis” are synonymous and refer to a single addressable motor.

Units
• Motor position, as well as the begin and end calibration points, are expressed in rotations.
• Motor speed is expressed in rotations per second.
• Motor acceleration/deceleration rates are expressed in rotations per second per second.
• Delay and duration values are expressed in seconds.
• When referring to a value within a specific range, Duration and Position can also be

expressed as a ‘normalized’ value between 0 and 1.

Notes
• Many messages take a one byte motor address to deal with a specific motor. Motor

addresses must be between 1 and 10, inclusive.
• In theory, a motor of address of 0 can be used to address all motors. In practice, this is only

used in two cases: to reset all the axes at one time and when instructing an attached camera
to take a picture.

• All data values are sent over the network in network (big endian) byte order.

Data Types
Parameter data types are specified as follows:

Data Type Description
Bool Unsigned 8-bit integer where 1 = True/On/Enabled and 0 = False/Off/Disabled
UInt8 Unsigned 8-bit integer.
UInt16 Unsigned 16-bit integer.
Int32 Signed 32-bit integer.
UInt32 Unsigned 32-bit integer.
Float32 32-bit floating point value.
UnixTime Unsigned 32-bit integer specifying the number of seconds for a time interval or the

number of seconds since 1-1-1970 12:00AM GMT for a date/time value.
String Unicode (UTF-8) string value. The first two bytes are a UInt16 value specifying the

length of the string in characters (not including the length bytes). Values may be
null-terminated.

Block Generic block of data. The first two bytes are UInt16 value specifying the length of
the block in bytes (not including the length bytes).

Message Header
Messages contain both a header and a payload. The payload contains parameter values that are
defined by the specific message, but every message has the following header:

Field Data Type Description
ProtocolVersion UInt8 0x04
MessageLength UInt16 The length of the message including the entire header.
MessageID UInt16 The unique ID of the message.
MessageType UInt8 The type of message:

• 0 = Set
• 1 = Get
• 2 = Response (to a ‘Get’)

Get/Set Messages
• Clients always initiate Get/Set messages. These messages are used to share ‘state’

information between clients and the Device.
• Whether the message is a Get, Set, or a Response (to a Get) is determined by the

MessageType field in the header.
• A message with type ‘Response’ should always be returned upon receiving a ‘Get’ message.
• No response is sent to a ‘Set’ message. If a Set will take a significant amount of time, or if the

client needs to be informed when the Set is completed, an Action message with a
Notification is a better implementation.

• Naming convention: The name of the message is descriptive of the data that is shared.
Depending on the value of MessageType, a prefix of Get, a prefix of Set, or a suffix of
Response can be added (e.g. (Get)MotorPosition, (Set)MotorPosition,
MotorPosition(Response).

Msg ID Message Name
0x02 (2) NetworkInfo
0x07 (7) LEDStatus
0x0B (11) MotorInfo
0x0F (15) DeviceInfo
0x10 (16) UserPassword
0x11 (17) DevicePassword
0x12 (18) TrajectoryData
0x1F (31) DeviceGUID
0x26 (38) SoftwareID
0x80 (128) Action
0x81 (129) Notification

NetworkInfo

Msg ID Get Parameters Set/Response Parameters

0x02 (2) LimitedResponse (Bool)

DHCP (Bool)
MACAddress (6 bytes)
IPAddress (UInt32)
SubnetMask (UInt32)
Gateway (UInt32)
DeviceType (UInt8)
DeviceAddr (UInt8)

• This message is used for device discovery on the network. Both clients and devices should

broadcast this message every five seconds. On Ethernet, this is sent as a UDP datagram when
no devices have made a TCP connection, otherwise it is sent over TCP.

• While (Get)NetworkInfo is supported, it is typically not needed. (Set)NetworkInfo is not
supported.

• If LimitedResponse is true, the response is sent back using a UDP limited broadcast
(255.255.255.255).

• The Gateway address is unused – discovery across routers is not supported.
• DeviceType is used to identify the type of kOS device. The currently defined values are as

follows:
o 0 = Unknown
o 3 = Second Shooter Plus
o 10 = Second Shooter Pro
o 11 = CineShooter

• DeviceAddr is currently unused and should be set to 0.

LEDStatus

Msg ID Get Parameters Set/Response Parameters

0x07 (7) (None required) MasterStatus (UInt8)
SlaveStatus (UInt8)

• Used to set or retrieve the state of the LEDs on the device.
• The Status parameters can contain one of the following values:

o 0 = Off
o 1 = On
o 2 = Slow Blink
o 3 = Fast Blink

MotorInfo

Msg ID Get Parameters Response Parameters

0x0B (11) (None required) MotorCount (UInt8)
 MotorAddress (UInt8)
 Position (Float32)
 BeginPosition (Float32)
 EndPosition (Float32)
 MaxMaxSetupSpeed (Float32)
 MaxMaxMoveSpeed (Float32)
 MaxMaxAcceleration (Float32)

(repeat for each MotorCount)

• (Get)MotorInfo can be used by clients to discover the motors that are connected to the

Device. Subsequent changes to motor status are handled through the MotorStatus
notification.

• (Set)MotorInfo is not supported.
• MotorAddress: only the first seven bits are used to indicate address of the motor The high

bit is set to indicate that the motor is a F.I.Z. motor.
• Position: the current position of the motor in rotations.
• BeginPosition: the position where the calibrated range begins.
• EndPosition: the position where the calibrated range ends. An EndPosition of 0 indicates the

axis has not been (or is no longer) calibrated.
• MaxMaxSetupSpeed: the maximum speed allowed by this motor when operating manually. It

sets the upper bound when configuring ‘Max Setup Speed’ in kOS software.
• MaxMaxMoveSpeed: the maximum speed allowed by this motor when executing a move. It

sets the upper bound when configuring ‘Max Move Speed’ in kOS software.
• MaxMaxAcceleration: the maximum acceleration allowed by this motor when executing a

move. It sets the upper bound when configuring ‘Damping’ in kOS software.

DeviceInfo

Msg ID Get Parameters Response Parameters

0x0F (15) DeviceType (UInt8)
DeviceAddr ((Uint8)
PlaybackMode (UInt8)
PlaybackStatus (UInt8)
FirmwareVersionMajor (UInt8)
FirmwareVersionMinor (UInt8)
FirmwareVersionRelease (UInt8)
FirmwareVersionBuild (UInt8)
NetworkID (UInt8)
HardwareID (UInt8)
DevicePassword (string)
AuxInputStatus (UInt8)
DelayTimeRemaining (Float32)
ElapsedTime (Float32)
PhotoCount (UInt32)

• (Set)DeviceInfo is not supported.
• Clients should send a (Get)DeviceInfo immediately after making a TCP connection.
• DeviceType is used to identify the type of Device (see the DeviceType parameter in the

NetworkInfo message for the enumeration).
• DeviceAddr, NetworkID and HardwareID are currently not used and should be set to 0.
• PlaybackMode indicates the last mode sent to the Device:

o 0 = LiveMotion
o 1 = TimeLapseContinuous
o 2 = TimeLapseSMS (Shoot-Move-Shoot)

• PlaybackStatus indicates the status of a move when a move is in progress (see
PlaybackStatus for possible values).

• AuxInputStatus: the status of the Aux input(s). See the AuxInputStatus notification message
for possible values.

• If PlaybackStatus is DelayTimerStarted, then DelayTimeRemaining is the amount of time
remaining (in seconds) before the move will begin.

• If PlaybackStatus indicates that a move is currently being executed, ElapsedTime is the time
that has elapsed (expressed as the percentage of the total move time).

• If PlaybackStatus is StartForward, and PlaybackMode is TimeLapseSMS then PhotoCount is
number of elapsed photos.

UserPassword

Msg ID Get Parameters Set Parameters

0x10 (16) (Not supported) Password (String)

• (Set)DevicePassword is used to set or change the User password. This message must be sent

by a client to the device right after a TCP connection is made. The user password must match
any password set previously on the device using the (Set)DevicePassword message. If the
User password does not match the Device password, the Device is considered locked and the
Device will simply ignore most messages sent to it.

• (Get)UserPassword is not needed in this scheme and is not supported.

DevicePassword

Msg ID Get Parameters Set Parameters

0x11 (17) (Not supported) Password (String)

• (Set)DevicePassword is used to set or change the Device password.
• Clients must send a User password that matches the Device password in order to place or

keep the device in an unlocked state. Therefore, clients should follow up a
(Set)DevicePassword with a (Set)UserPassword with the same value in order to maintain
an unlocked state.

• (Get)DevicePassword is not supported. The Device password is included in the DeviceInfo
payload.

TrajectoryData

Msg ID Get Parameters Set/Response Parameters

0x12 (18) (None required) BlockCount (UInt8)
 BlockID (UInt8)
 TrajectoryData (Block)

(repeat for each BlockCount))

• TrajectoryData contains blocks of information required to execute a move on a Device (see
the TrajectoryData section for the format of this data).

• A (Get)TrajectoryData message must generate a response, even if no TrajectoryData has
previously been sent to the Device.

DeviceGUID

Msg ID Get Parameters Response Parameters

0x1F (31) (None required) GUID (Block)

• Used to retrieve the unique GUID for the device.
• (Set)DeviceGUID is not supported.

SoftwareID

Msg ID Get Parameters Set/Response Parameters

0x26 (38) DeviceType (UInt8)

• Used to set and retrieve the platform of the last client that communicated with this device.

Typically, a change in platform indicates that any motor positions or calibrations stored by
the client are no longer valid.

Action Messages
• Action messages are always sent by clients to the Device. They are used to perform an action

on the Device where the data involved does not need to be persistent. In several cases, the
Device responds with a Notification when it completes the requested action.

• The MessageID for action messages is always 0x80.
• The MessageType is always ‘Set’.
• The message payload consists of at least a single byte specifying the Action ID, but may also

contain additional parameters depending on the action.
• Naming convention: verb describing the action followed by the target of that action.

Action ID Action Name
0x01 (1) ResetDevice
0x02 (2) ResetAxis
0x03 (3) MarkBeginPosition
0x04 (4) MarkEndPosition
0x05 (5) StartPlayback
0x06 (6) StopPlayback
0x07 (7) RapidToFirstKeyFrame
0x09 (9) TakePicture
0x0F (15) SetupPlayback
0x1C (28) SetPositionSpeedAcceleration
0x28 (40) BumpPositionSpeedAcceleration

ResetDevice

Action ID Parameters

0x01 (1)

• Performs a soft reboot of the Device.

ResetAxis

Action ID Parameters

0x02 (2) MotorAddress (UInt8)

• Resets an axis (i.e. clears the calibration).
• The device responds with a MotorCalibrated notification.
• Clients can use an address of 0 to reset all axes, however, in this case, no response is sent

from the device.
• The current motor position is reset to 0 after this message is received by the device.

MarkBeginPosition

Action ID Parameters

0x03 (3) MotorAddress (UInt8)

• Sets the current motor position as the MarkBegin calibration point.

MarkEndPosition

Action ID Parameters

0x04 (4) MotorAddress (UInt8)

• Sets the MarkEnd calibration point.
• The Device sends a MotorCalibrated notification when calibration is completed. At that

point, MarkBegin is 0, MarkEnd is a positive or negative value relative to MarkBegin, and the
current motor position is equal to MarkEnd.

StartPlayback

Action ID Parameters

0x05 (5) Direction (UInt8)
StartTime (Float32)

• Instructs the Device to start playback of a move (see the sections on Executing a Live Motion

Move for details on how this is used).
• The Device responds with PlaybackStatus notifications.
• The Direction and StartTime parameters should be set to 0.

StopPlayback

Action ID Parameters

0x06 (6)

• Instructs the Device to stop a move and stop all motors immediately.
• The Device responds with PlaybackStatus notifications and MotorPosition notifications.

RapidToFirstKeyFrame

Action ID Parameters

0x07 (7)

• Instructs the Device to move all motors directly to their first key frame positions.
• This message must be preceded by a (Set)Trajectory Data message.
• The speed at which the motors are returned is determined by the ReturnToHomePercent

parameter in the Playback block of TrajectoryData.
• The Device performs this same function after receiving a SetupPlayback message (or a

StartPlayback message not preceded by a SetupPlayback message).

TakePicture

Action ID Parameters

0x09 (9) MotorAddress (UInt8)
Exposure (Float32)

• Instructs the Device to take a picture using an attached camera.
• Clients should always use a motor address of 0.
• Exposure is the time in seconds between opening and closing the shutter on the camera.

SetupPlayback

Action ID Parameters

0x0F (15) Direction (UInt8)
StartTime (Float32)
DelayReturn (Bool)

• Instructs the Device to completely load a move without actually starting the move (see the

sections on Executing a Live Motion Move for details on how this is used).
• After this message is sent, a StartPlayback message must be sent to start the move.
• See StartPlayback for parameter definitions and restrictions.
• If DelayReturn is true, the return to first key frame does not happen until after the

StartPlayback message is sent.
• The Device responds with PlaybackStatus notifications. A PlaybackStatus: SetupCompleted

notification is required.
•

SetPositionSpeedAcceleration

Action ID Parameters

0x1C (28) MotorAddress (UInt8)
Position (Float32)
Speed (Float32)
Acceleration (Float32)

• Sets the position, speed and acceleration for the specified motor.
• On uncalibrated motors, Position should be +/-25000 (depending on what direction you

want to move)
• On calibrated motors, Position should be between 0 and the Mark End position.
• The maximum allowable Speed is 165 for Slider/Pan, 65 for Tilt, and 200 for Focus/Zoom.
• Setting the motor speed to 0 stops the motor.
• The maximum allowable Acceleration is 100 for Slider/Pan and 50 for Tilt/Focus/Zoom.

BumpPositionSpeedAcceleration

Action ID Parameters

0x28 (40) MotorAddress (UInt8)
Delta (Float32)
Speed (Float32)
Acceleration (Float32)

• Sets the delta (bump distance), speed and acceleration for the specified motor.
• The maximum allowable Speed is 165 for Slider/Pan, 65 for Tilt, and 200 for Focus/Zoom.
• Setting the motor speed to 0 stops the motor.
• The maximum allowable Acceleration is 100 for Slider/Pan and 50 for Tilt/Focus/Zoom.

Notification Messages
• Notification messages are always sent unsolicited by the Device to clients.
• The MessageID is always 0x81.
• MessageType is always ‘Response’.
• Payload consists of at least a single byte specifying the Notification ID, but may also contain

additional parameters depending on the notification.
• Naming convention: the name should be descriptive of the action or data that triggered the

notification. The notification can also be referred to with Notification appended to the end
(e.g. MotorStatus(Notification)).

Note ID Notification Name
0x01 (1) MotorStatus
0x02 (2) PlaybackStatus
0x03 (3) ErrorStatus
0x07 (7) MotorPosition
0x11 (17) MotorCalibrated
0x15 (21) AuxInputStatus
0xFF (255) UnsupportedMessage

MotorStatus

Note ID Parameters

0x01 (1) MotorCount (UInt8)
 MotorAddress (UInt8)
 OnlineStatus (Bool)
 MotorType (UInt8)
 MaxMaxSetupSpeed (Float)
 MaxMaxMoveSpeed (Float)
 MaxMaxAcceleration (Float)

(repeat for each MotorCount)

• Sent every time the status of a motor changes (a motor comes online or goes offline).
• MotorAddress: the address of the motor.
• OnlineStatus: true if the motor is coming online.
• MotorType: 0 = (not F.I.Z), 1 = (F.I.Z)
• See the MotorInfo message for descriptions of the remaining parameters.

PlaybackStatus

Note ID Parameters

0x02 (2) PlaybackStatus (UInt8)
ElapsedTime (Float32)
PhotoCount (Float32)
MotorCount (UInt8)

 MotorAddress (UInt8)
 Position (Float32)

(repeat for each MotorCount)

• Sent at key times during the preparation and execution of a move to indicate the current
state.

• PlaybackStatus can be one of the following values:
o 0 = NoMove: no move is being executed.
o 1 = MotorsHome: motors have returned to their first key frame positions.
o 2 = StartForward: a forward move has been started or is in progress.
o 3 = StartReverse: a reverse move has been started or is in progress.
o 4 = EndOfMove: the end (or beginning) of the move has been reached.
o 5 = FullStop: the move has been stopped or has completed.
o 6 = StartFrame: sent at the beginning of each a delay-exposure-move sequence

when executing a Time Lapse SMS (Shoot Move Shoot) move.
o 7 = SetupCompleted: the Device has finished configuring the move after a

SetupPlayback message has been received.
o 8 = DelayTimerStarted: the Device has finished configuring the move and the delay

timer has started.
o 9 = PreCameraRollStarted: when the ‘Camera Roll’ feature is enabled, the Device has

opened the shutter.
o 10 = PostCameraRollCompleted: when the ‘Camera Roll’ feature is enabled, the

Device has closed the shutter.
o 11 = PreMovePhotosStarted: on a Time Lapse, the Device has started taking the pre-

move photos.
o 12 = PostMovePhotosCompleted: on a Time Lapse, the Device has completed taking

the post-move photos.
o 13 = SMSMotorsStopped: sent each time the motors stop during a Time Lapse SMS

move.
• ElapsedTime is the normalized current elapsed time of the move.
• PhotoCount is the number of photos that have been taken in a Time Lapse SMS move.
• MotorCount/MotorAddress/Position: the current position of all the motors included in the

move.

ErrorStatus

Note ID Parameters

0x03 (3) ErrorCode (UInt8)
MotorAddress (UInt8)

• Used to notify the client of general error conditions.
• ErrorCode is defined as follows:

o 0 = Error returning to first key frame (*)
o 1 = Unable to write trajectory data to flash (*) (Obsolete)
o 2 = Unable to execute move (*)
o 3 = Error in trajectory data (*)
o 4 = Motor address is not valid
o 6 = No motors connected (*)
o 7 = Unable to read trajectory data from flash (*) (Obsolete)
o 10 = Run away error detected - axis will be reset
o 11 = Motors not in PVT mode
o 12 = PVT quick stop
o 13 = PVT integrity counter error
o 14 = Motor calibration error - axis will be reset
o 15 = The Device is locked out - invalid password entered
o 16 = A fault condition was detected - axis will be reset
o 17 = Invalid move time
o 19 – External Intervalometer has not been setup correctly (*)
o 20 – No input configured for External Intervalometer (*)

• MotorAddress is the address of the motor that triggered the error.
• Codes marked with (*) will be followed by a MotorAddress of 0.

MotorPosition

Note ID Parameters

0x07 (7) MotorAddress (UInt8)
Position (Float32)

• Sent after a motor has become idle after the motor’s position has been changed.
• This notification should be sent after any attempt by client software to change the motor

position, even if the motor does not actually change position.
•

MotorCalibrated

Note ID Parameters

0x11 (17) MotorAddress (UInt8)
BeginPosition (Float(32)
EndPosition (Float32)

• Sent by the Device when a motor has been successfully calibrated. This is the expected

response to a MarkEndPosition action message.

AuxInputStatus

Note ID Parameters

0x15 (21) Status (UInt8)

• Sent by the device when the status of one of the aux inputs changes or when a slave

controller is connected or disconnected.
• The Status byte is a bitmapped value and should be interpreted as follows:

o Bit 0: Master tip
o Bit 1: Master ring
o Bit 2: Slave tip
o Bit 3: Slave ring
o Bit 4: Slave controller is present

UnsupportedMessage

Note ID Parameters

0xFF (255)

• Sent by the device when it receives a message it does not support. The payload contains

as much of the offending message as possible.

Initialization
The following table describes initialization sequence takes place whenever Kessler kOS software
attempts to establish a network connection to the Device. This happens when the software is first
started or whenever the software attempts to reestablish a connection. The latter can be user
initiated or can happen, for example, after the Device has been reset, or after new firmware has been
uploaded.

Device Discovery

The Device should send a NetworkInfo response as a limited Broadcast every five seconds when a
TCP connection has not been made to the Device.

Initialization

The following assumes that the Client has made a TCP connection to the Device, or that a USB session
with the device has begun.

Client Device
Send (Get)DeviceInfo
 Send DeviceInfo(Response)
Receive DeviceInfo(Response)
Send (Set)UserPassword
Send (Get)MotorInfo

 Send MotorInfo(Response)
Receive MotorInfo(Response)
Send (Get)DeviceGUID

 Send DeviceGUID(Response)
Receive DeviceGUID(Response)

Note: a (Set)UserPassword must be sent to the device that matches the current device password in order
to unlock the device. This is not required when connecting via USB.

TrajectoryData

Format

BlockCount (Uint8)

Playback (BlockID=1)
BlockID (Uint8) = 1
BlockSize (Uint16) = 37
PlaybackMode (UInt8)
Duration (Float32)
RapidReverseDuration (Float32)
LoopAfterRapidReverse (UInt8)
LoopAfterReverse (UInt8)
DelayMode (UInt8)
DelayInterval (Float32)
CameraRollEnabled (Bool)
CameraRollPreDelay (Float32)
CameraRollPostDelay (Float32)
FlashMarkEnabled (Bool)
FlashMarkType (UInt8)
FlashMarkPostDelay (Float32)
UseExternalTrigger (Bool)
UsingLANCCable (Bool)
ReturnToHomePercent (Float32)

TimeLapse (BlockID=2)
BlockID (Uint8) = 2
BlockSize (Uint16) = 21
Delay (Float32)
Exposure (Float32)
MovePhotos (UInt32)
Not Used (UInt8)
PreMovePhotos (UInt32)
PostMovePhotos (UInt32)

Axis (BlockID=5) (One for each axis included in the move)
BlockID (Uint8) = 5
BlockSize (Uint16) = 2
MotorAddress (UInt8)
SegmentCount (UInt8)

Segment (BlockID=6) (One for each segment of each axis included in the move)
BlockID (Uint8) = 6
BlockSize (Uint16) = 34
MotorAddress (UInt8)
SegmentNumber (UInt8) (0-based)
P0Time (Float32)
P0Position (Float32)
P1Time (Float32)
P1Position (Float32)
P2Time (Float32)
P2Position (Float32)
P3Time (Float32)
P3Position (Float32)

Notes
• The first three blocks must be included in the payload of every (Set)TrajectoryData message

sent.
• Include one Axis block (and the desired number of Segment blocks) for each axis included in

the move.
• Fields labeled ‘Not Used’ must be included and set to 0.

Playback

• PlaybackMode: see DeviceInfo for possible values.
• Duration: indicates the length of the actual move in seconds. It does not include pre/post

move delays, or the length of time it takes to execute pre/post move photos. Note that
Duration for a time lapse is not used by the Device as the length of the move is calculated
based on delay, exposure, and the number of photos.

• RapidReverseDuration: the move time to use when moving when performing a rapid
reverse while looping.
This value should be set to the same value as Duration.

• LoopAfterReverse: indicates the number of times to loop after executing the move in
reverse. A value of 255 indicates the loop should be executed continuously. If this value is
non-zero, when the move gets to time 1.0, the motors are returned to their first key frame
positions by following the trajectory. Duration is used as the length of the move in reverse.
Once the motors reach their first key frame positions, the move is executed again.

• LoopAfterRapidReverse: indicates the number of times to loop after executing the move
rapidly in reverse. A value of 255 indicates the loop should be executed continuously. If this
value is non-zero, when the move gets to time 1.0, the motors are returned to their first key
frame positions by following the trajectory. The RapidReverseDuration parameter is used as
the length of the move in reverse. Once the motors reach their first key frame positions, the
move is executed again.

• LoopAfterReverse and LoopAfterRapidReverse are mutually exclusive. Only one should be
set to a non-zero value. Looping is not supported when executing a Time Lapse move and
these values should be set to 0.

• DelayMode:
o 0 = No delay.
o 1 = Delay for time (DelayInterval is the number of seconds to delay).
o 2 = Delay until a specific date/time (DelayInterval is the date/time to start the move

in UnixTime format).
• CameraRollEnabled: not supported and should be set to 0.
• CameraRollPreDelay should be set to 0. Use the DelayInterval field to specify the length of

time to delay before executing the move.
• All FlashMark fields should be set to 0.
• UseExternalTrigger and UsingLANCCable are unsupported and should be set to 0.

Time Lapse

• Delay and Exposure are in seconds.

Axis/Segment

• For each segment, P0 and P3 are the end points and P1 and P2 are the Bezier control points
between the end points. Both time and position are normalized values. Time is expressed as
a percentage of the Duration of the move and Position is expressed as a percentage of the
calibrated range for the motor.

Executing a Live Motion Move

The following table lists the actions and notifications during the loading and executing of a Live
Motion move:

Action Client Device

User selects ‘Load’ Send (Set)TrajectoryData
Send SetupPlayback

1The device moves all
motors to their first key
frame position

 Send PlaybackStatus: MotorsHome

Device has configured move
and is ready to execute

 Send PlaybackStatus: SetupCompleted

2User selects ‘Play’ Send StartPlayback

Device has started its
internal countdown if the
move has been configured
with any pre-move delay

 Send PlaybackStatus: DelayTimerStarted

Delay countdown has
expired and the device
begins executing the move

 Send PlaybackStatus: StartForward (or
StartReverse)

Move reaches the end of its
trajectory (time=1.0, or 0.0
on a reverse move)

 Send PlaybackStatus: EndOfMove

Looping is enabled Repeat previous two steps as required

Move has been fully
executed

 3Send PlaybackStatus: FullStop

User selects ‘Stop’ at any
time

Send StopPlayback 3Send PlaybackStatus: FullStop
Send MotorPosition notification for all motors

Notes:
1The SetupPlayback message has an option to delay this step until immediately after StartPlayback has been
sent.
2It is also possible to forgo the SetupPlayback message and just send a StartPlayback message. In this case, all
configuration is done on the device before subsequent steps are taken (a SetupCompleted notification is not
sent).
3When the Device sends “FullStop’ the configured move is no longer valid ((Set)TrajectoryData must be sent
again).

Executing a Time Lapse Move

The following table lists the actions and notifications during the loading and executing of a Time
Lapse move:

Action Client Device

User selects ‘Load’ Send (Set)TrajectoryData
Send SetupPlayback

1Device moves all motors to
their first key frame position

 Send PlaybackStatus: MotorsHome

Device has configured move and
is ready to execute

 Send PlaybackStatus: SetupCompleted

2User selects ‘Play’ Send StartPlayback

Device has started its internal
countdown if the move has been
configured with any pre-move
delay

 Send PlaybackStatus: DelayTimerStarted

Device begins executing pre
move photos

 Send PlaybackStatus: PreMovePhotosStarted

Device begins executing the
move

 Send PlaybackStatus: StartForward

Shoot-Move-Shoot only: At the
beginning of each delay-picture-
exposure sequence

 Send PlaybackStatus: StartFrame

Move reaches the end of its
trajectory (time=1.0)

 Send PlaybackStatus: EndOfMove

Device has completed executing
post move photos

 Send PlaybackStatus:
PostMovePhotosCompleted

Move has been fully executed 3Send PlaybackStatus: FullStop

User selects ‘Stop’ at any time Send StopPlayback 3Send PlaybackStatus: FullStop

Send MotorPosition(Notification) for all motors

Notes:
Looping is disabled when executing a Time Lapse.
Reverse moves are not allowed when executing a Time Lapse.
1The SetupPlayback message has an option to delay this step until immediately after StartPlayback has been
sent.
2It is also possible to forgo the SetupPlayback message and just send a StartPlayback message. In this case, all
configuration is done on the device before subsequent steps are taken (a SetupCompleted notification is not
sent).
3When the Device sends “FullStop’ the configured move is no longer valid ((Set)TrajectoryData must be sent
again).

3rd Party Development Notes

• Make sure you can connect to the Device from one of the kOS client applications (preferably
on the computer you are using for development), then retrieve the IP address of the Device
from the ‘About’ window of that application.

• Close any kOS client applications. If using the device’s AP, disconnect all computers from the
Device’s wireless network except the one you are using for development.

• Establish a TCP connection to the Device (on port 5520) and use that connection to send all
messages.

• There is a 30 second keep alive period on the TCP connection. You must send some message
to the Device within that timeframe or the TCP connection will be dropped by the Device. If
the client is idle, a (Get)NetworkInfo message should be sent every ten seconds to keep the
connection alive.

• After a TCP connection has been made, send a (Get)DeviceInfo message. The Device will
respond with a DeviceInfo(Response) message.

• After exchanging the DeviceInfo messages, a (Set)UserPassword message containing the
current Device password must be sent before any other messages can be sent.

• Use the (Get)MotorInfo message to retrieve information on the motors connected to the
Device.

• To move uncalibrated motors, use the SetPositionSpeedAcceleration message:
o The Position parameter should be either -25000 or 25000 (depending on which

direction you want to go).
o See the message documentation for maximum values for speed and acceleration.
o Set the Speed parameter to 0 to stop the motor.

• To calibrate a motor:
o Move the motor to the desired start position then send a MarkBeginPosition

message.
o Move the motor to the desired end position then send a MarkEndPosition message.
o Wait for the MotorCalibrated notification and note the Mark End position in the

payload (this can be either a positive or negative number). At this point, the Mark
Begin position is 0, and the Mark End position is a value relative to the Mark Begin
position.

• To move calibrated motors, use the SetPositionSpeedAcceleration message:
o The Position parameter should be between 0 and the Mark End position.
o See the message documentation for maximum values for speed and acceleration.

• To execute a move, refer to the steps under Executing a Live Motion Move or Executing a
Time Lapse Move above.

Discovery and Example Messages

Make a TCP Connection to a Device
The device sends a NetworkInfo response message as a UDP broadcast every five seconds that
contains its IP address. You can also obtain the IP address from the About window in the kOS
software.

Get Information about the Device
Immediately after making a TCP connection to the device, send a (Get)DeviceInfo message:

04 00 06 00 0F 01

You will receive a DeviceInfo response.

Get Information about attached motors
Send a (Get)MotorInfo message:

04 00 06 00 0B 01

You will receive a MotorInfo response for each motor attached to the device:

An example response:
04 //Protocol ID always 4
00 1C //Message Size
00 0B //Message ID
82 //Message Type: normally this would be 02 for a Response (see below)
01 //Number of motors in this message (see below)
01 //The motor address for this motor
C2 41 70 00 //The current position = 49.35938
00 00 00 00 //The calibrated begin position for this motor – should be 0
C3 54 20 40 //The calibrated end position for this motor = 212.126 (see below)
43 26 B3 33 //The fastest speed for this motor during setup = 10002
43 26 B3 33 //The fastest speed for this motor in a programmed move = 10002
43 48 00 00 //The fastest acceleration for this motor = 200

Number of motors: you will receive one MotorInfo response per motor attached to the device, so this
value should always be 01.
Message Type: if the value is 82 instead of 02, it indicates that more MotorInfo responses follow this
one. The last response will have a Message Type of 02.
End Position: if this value is 0, it indicates the motor is not calibrated. If it is not 0, then the motor
position can be between 0 and this number (which can be negative).

Moving a calibrated motor always involves setting an actual motor position (as opposed to a relative
position), so you must always keep track of the current position of the motor.

Move an uncalibrated motor
Use the SetPositionSpeedAcceleration message. Set the motor position to either 25000 or -25000
(depending on which direction you want to move). Set the speed and acceleration as desired. Set the
motor speed to 0 to stop the motor.

Example:

Send SetPositionSpeedAcceleration: MotorAddress=3 Position=25000.000 Speed=100.000
Acceleration=100.000

04 00 14 00 80 00 1C 03 46 C3 50 00 42 C8 00 00 42 C8 00 00

Move a calibrated motor
Use the SetPositionSpeedAcceleration message. Remember that the position must be between 0 and
the calibrated end position returned by MotorInfo.

Example:

Send SetPositionSpeedAcceleration: MotorAddress =1 position=50.910 speed=100.000
acceleration=100.000

04 00 10 00 80 00 1C 01 C2 4B A4 14 42 C8 00 00 42 C8 00 00

When the motors become idle…
You will receive a MotorPosition notification for each motor with the current position of the motor:

Example:

MotorPosition(Notification): MotorAddress=3 position=11.982

04 00 0C 00 81 02 07 03 41 3F B8 00

USB Notes

• You must precede the kOS message with a report ID byte, which is 0x01.
• The packet should be padded to 64 bytes using 0x00.
• On responses, strip off the first byte, then use the size byte in the kOS message header to

determine how many bytes to grab out of the response packet.
• This six byte keep alive message must be sent every 4 seconds:

o {0x04, 0x00, 0x06, 0x00, 0x00, 0x00}

• The UserPassword and DevicePassword messages are not required or supported.

